AM8EB051A Data Sheet

佑華微電子股份有限公司
新竹市光復路二段295號9樓之1號
電話：03－573 6660
傳真：03－573 6661
www．ealpha．com．tw

Alpha Microelectronics Corp．

9F－1，295，Sec．2，Kuang Fu Rd．，Hsinchu，Taiwan
Tel ：＋886－3－573 6660
Fax：＋886－3－573 6661
www．ealpha．com．tw

Revision History

Rev	Date	Description	Page
1.00	$2006 / 3 / 9$	Original.	-
1.10	$2009 / 4 / 10$	1. Add description of operating voltage range. 2. Amend operating temperature range. 3. Amend description of SBCAR instruction.	4

Table of Contents

1. General Description 4
1.1 Features 4
1.2 Block Diagram 5
1.3 Pin Assignment 6
1.4 Pin Description 7
2. Memory Organization 8
2.1 Program Memory Organization 8
2.2 Data Memory Map 9
3. Functional Descriptions 9
3.1 General Function Registers 9
3.2 I/O Control Registers (Addressed by IOST, IOSTR Instruction) 13
3.3 Special Function Registers (Addressed by SFUN, SFUNR Instruction) 16
3.4 RESET. 17
3.5 I/O Ports 19
3.6 Real Time Clock (TIMERO) and Watchdog Timer 21
3.6.1 Timer0 21
3.6.2 Watchdog Timer (WDT) 21
3.6.3 Prescaler 21
3.6.4 Switching Prescaler Assignment 21
3.7 Oscillator Configuration 22
3.7.1 IRC Mode 23
3.7.2 EXT-R Mode 23
3.7.3 LF-XTAL, XTAL, HF-XTAL Mode 24
3.7.4 ERC Mode 25
3.8 Interrupts 26
3.8.1 External INT Interrupt 26
3.8.2 TimerO Interrupt 26
3.8.3 Port B Input Change Interrupt 26
3.8.4 Watchdog Timer out Interrupt 27
3.9 Power-Down Mode (Sleep) 27
3.9.1 Wake-up from SLEEP Mode 27
3.10 Configuration Word 28
4. Instruction Set 30
5. Electrical Characteristics 42
5.1 Absolute Maximum Rating 42
5.2 DC Characteristics (Top $=25^{\circ} \mathrm{C}$) 42
6. Ordering Information 46

1. General Description

The AM8EB051A is a family of low-cost, high speed, high noise immunity and EPROM-embedded 8-bit CMOS micro-controllers. It employs a RISC architecture with only 55 instructions. All instructions are single cycle except for program branches that take two cycles. The AM8EB051A provides powerful and easy useful instruction sets that can directly or indirectly address its register files and data memory.

1.1 Features

- Wide operating voltage range:
- Four oscillator periods: $2.0 \sim 5.5 \mathrm{~V}$ at $32 \mathrm{kHz}, 2.2 \sim 5.5 \mathrm{~V}$ at $\mathrm{DC}-4 \mathrm{MHz}, 2.6 \sim 5.5 \mathrm{~V}$ at $\mathrm{DC}-20 \mathrm{MHz}$.
- Two oscillator periods: $2.0 \sim 5.5 \mathrm{~V}$ at $32 \mathrm{kHz}, 2.2 \sim 5.5 \mathrm{~V}$ at $\mathrm{DC}-8 \mathrm{MHz}, 10 \mathrm{MHz}-16 \mathrm{MHZ}, 20 \mathrm{MHZ}$ not used.
- Wide operating frequency range: $32 \mathrm{kHz} \sim 20 \mathrm{MHz}$.
- Wide operating temperature range: $0^{\circ} \mathrm{C} \sim 70^{\circ} \mathrm{C}$.
- ROM: $1 \mathrm{~K} \times 14$ bits.
- RAM: 48×8 bits.
- Selectable oscillator options:
- IRC: Internal Resistor and Capacitor Oscillator.
- EXT-R: External Resistor and internal Capacitor Oscillator.
- ERC: External Resistor and Capacitor Oscillator.
- LF-XTAL: Low Frequency Crystal Oscillator.
- XTAL: Crystal / Resonator Oscillator.
- HF-XTAL: High Frequency Crystal / Resonator Oscillator.
- 6-level deep hardware stack.
- Total 55 single word instructions.
- All instructions are single cycle except for program branches which are two-cycle.
- Direct, indirect addressing modes for data accessing.
- All ROM area LGOTO instruction, all ROM area subroutine LCALL instruction.
- 8-bit real time clock / counter (Timer0) with 8-bit programmable prescaler.
- On chip Watchdog Timer (WDT) with internal oscillator for reliable operation and software Watchdog enable / disable control.
- Internal Power-on Reset (POR).
- Built-in Low Voltage Reset (LVR).
- Power-up Reset Timer (PWRT) and Oscillator Start-up Timer (OST).
- SLEEP mode function to reduce power consumption.
- I/O ports PB with independent direction control.
- Software I/O pull-high / pull-down or open-drain control.
- One IR carrier output (38k / 57 kHz).
- Four Interrupt source:
- Timer0 overflow.
- PB input change.
- External Interrupt Pin.
- Watchdog time out Interrupt (If this function is enabled by programming the configuration word.).
- Wake-up from SLEEP by external INT pin, Port B input change, WDT reset or WDT interrupt.
- Programmable Code Protection.

1.2 Block Diagram

1.3 Pin Assignment

2	VDD	1		
		PB6		
3	PB5/Xin/Rin			
4	PB4/Xout		PB7	10
5	PB3/Reset ${ }^{\text {a }}$			
			PBO/INT	8
			PB1/IR	7
			PB2/RTCC	6

1.4 Pin Description

Name	ATTR.	Function
PB0 / INT	I/O	Bi-directional PB0. External interrupt input.
PB1 / IR	I/O	Bi-directional PB1. IR carrier output.
PB2 / RTCC	I/O	Bi-directional PB2. Input pin of real time counter / clock.
PB3 / Reset	I/O	Bi-directional PB3. Input pin for device reset. If this pin is low, the device is reset.
PB4 / Xout	I/O	X'TAL type: Output terminal of crystal oscillator. EXT-R or ERC type: This pin can output instruction clock. IRC type: Bi-directional PB4, or this pin can output instruction clock.
PB5 / Xin / Rin	I/O	X'TAL type: Input terminal of crystal oscillator. EXT-R type: External resistor for EXT-R oscillator. ERC type: Input pin of external RC oscillator. IRC type: Bi-directional PB5.
PB6	I/O	Bi-directional PB6.
PB7	I/O	Bi-directional PB7.
VDD	-	Power supply.
Vss	-	Ground.

2. Memory Organization

AM8EB051A memory is organized into program memory and data memory.

2.1 Program Memory Organization

The AM8EB051A has a 10-bit Program Counter (PC) capable of addressing a $1 \mathrm{~K} \times 14$ bit program memory space. The RESET vector of the AM8EB051A is at 000h; the INT instruction software interrupt vector is at 001h; the Global hardware interrupt vector is at 008h. AM8EB051A supports all ROM area LCALL / LGOTO instructions without page.

FIGURE 2.1: Program Memory Map and STACK

2.2 Data Memory Map

Data memory includes General Function Registers and General Storage Registers. The Data Memory is accessed either directly or indirectly through the FSR register.

TABLE 2.1: Registers File Map for AM8EB051A

Address	Description
00 h	Indirect Addressing Register
01 h	Timer0
02 h	PCL
03 h	STATUS
04 h	FSR
06 h	PortB
0 h	Interrupt Status Register
$10 \mathrm{~h} \sim 3 \mathrm{Fh}$	General Storage Register

3. Functional Descriptions

3.1 General Function Registers

- INAR (Indirect Address Register): R0

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction accessing this register can access data pointed by FSR (R4).

- Timer0 (8-bit real-time clock / timer): R1

This register increases by an external signal edge applied to RTCC pin, or by internal instruction cycle. It can be read or written as any other register.

- PCL (Low Byte of Program Counter): R2

This register increases itself every instruction cycle, except the following condition shown in Figure below.

For change content of PCL register instruction where the PCL register is the destination, the Bit5 of the Status register will provide data to A9 of the Program Counter, the A8 of the Program Counter is always cleared. The configuration is shown in the following figure:

- STATUS (Status Register): R3

The content of R3 is listed in Table below.
TABLE 3.1: STATUS Register

Bit	Symbol	Description
0	C	$\begin{aligned} & \text { Carry / borrow bit } \\ & \begin{aligned} \text { ADD } & =1, A \text { carry occurred. } \\ & =0, A \text { carry did not occur. } \\ \text { SUB } & =1, A \text { borrow did not occur. } \\ & =0, A \text { borrow occur. } \end{aligned} \end{aligned}$
1	DC	Half carry / half borrow bit ADD $=1$, A carry from the 4th low order bit of the result occurred. $=0$, A carry from the 4th low order bit of the result did not occur. SUB $=1$, A borrow from the 4th low order bit of the result did not occur. $=0$, A borrow from the 4th low order bit of the result occurred.
2	Z	$\begin{aligned} \text { Zero bit } & =1, \text { The result of a logic operation is zero. } \\ & =0, \text { The result of a logic operation is not zero. } \end{aligned}$
3	PD	$\begin{aligned} \text { Power down flag bit } & =1, \text { After power-up or by the CLRWDT instruction. } \\ & =0, \text { By the SLEEP instruction. } \end{aligned}$
4	TO	$\begin{aligned} \text { Time overflow flag bit } & =1, \text { After power-up or by the CLRWDT or SLEEP instruction. } \\ & =0, \text { A WDT time-overflow occurred. } \end{aligned}$
5	PAO	Program Page Pre-select Bit PAO $=0$, Program Page 0 (000h~1FFh). PAO = 1, Program Page 1 (200 h ~ 3FFh).
6	-	General purpose R/W bits.
7	RST	= 1 , Wake-up from sleep mode by Port B input change interrupt.

- FSR (File select register pointer): R4

Bit 0~5 are used to select up to 64 registers (address: 00h~3Fh) in the indirect addressing mode; Bit $6 \sim 7$ are not used and always read " 1 " shown in the following Figure:

1	1	B5	B4	B3	B2	B1	B0

00h	INAR
01 h	Timer0
02h	PCL
03h	STATUS
04 h	FSR
06 h	PortB
0Fh	Interrupt Status Register
$10 \mathrm{~h} \sim 3 F h$	SRAM

Indirect Addressing Mode location select

- PORT B: R6

PB7 : PB0, bi-directional I/O Register.

- Interrupt Status Register: RF

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	WDTIF				EXIF	PBIF	TOIF

* Bit 0 (TOIF) : Timer0 overflow interrupt flag. Set " 1 " when the Timer0 overflow, reset by software.
* Bit 1 (PBIF) : PortB input change interrupt flag. Set " 1 " when PortB input change, reset by software.
* Bit 2 (EXIF) : External INT pin interrupt flag. Set "1" when External INT pin interrupt, reset by software.
* Bit 3 ~ 5 : Not used.
* Bit 6 (WDTIF) : Watchdog timer out interrupt flag. Set " 1 " when watchdog time out interrupt, reset by software.
* Bit 7 : Not used.
- R10 ~ R3F

R10 ~ R3F are general storage registers.

- TOMODE REGISTER

TOMODE is a readable / writable register and the content is listed in the following Table.

Bit	Symbol	Description			
		Bit value	Timer rate	WDT reset rate	WDT INT rate
2-0	PS2:PS0	$\begin{array}{lll} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$	$\begin{aligned} & 1: 2 \\ & 1: 4 \\ & 1: 8 \\ & 1: 16 \\ & 1: 32 \\ & 1: 64 \\ & 1: 128 \\ & 1: 256 \\ & \hline \end{aligned}$	$\begin{aligned} & 1: 1 \\ & 1: 2 \\ & 1: 4 \\ & 1: 8 \\ & 1: 16 \\ & 1: 32 \\ & 1: 64 \\ & 1: 128 \end{aligned}$	$\begin{aligned} & 1: 2 \\ & 1: 4 \\ & 1: 8 \\ & 1: 16 \\ & 1: 32 \\ & 1: 64 \\ & 1: 128 \\ & 1: 256 \end{aligned}$
3	PSC	Prescaler assign bit$\begin{aligned} & =0, \text { Timer0. } \\ & =1, \text { WDT. } \end{aligned}$			
4	TE	$\begin{aligned} & \text { Timer0 source signal edge select bit } \\ & =0 \text {, Increment when low-to-high transition on RTCC pin for TIMO. } \\ & =1 \text {, Increment when high-to-low transition on RTCC pin for TIMO. } \end{aligned}$			
5	TS	```Timer0 source signal select bit = 0, Internal instruction clock cycle. = 1, Transition on RTCC pin.```			
6	INTF	Interrupt enable flag (Read Only) $=0$, masked by DISI or hardware interrupt. = 1, enabled by ENI / RETIE instructions.			
7	INTEDG	Interrupt edge select bit$\begin{aligned} & =0 \text {, interrupt on falling edge of INT pin. } \\ & =1, \text { interrupt on rising edge of INT pin. } \end{aligned}$			

* The first WDT Interrupt is $1 / 2$ period after executing Reset function or CLRWDT instruction when the Prescaler is assigned to Watch Dog Timer.

3.2 I/O Control Registers (Addressed by IOST, IOSTR Instruction)

- Control PortB I/O Mode Register: F6 (PortB)

The F6 register is both readable and writable.
$=0$, the relative I/O pin is in output mode.
$=1$, the relative I / O pin is in input mode.

- PortB Input Change Interrupt Control Register: F9

The F9 register is both readable and writable.

* Bit 0 (PBEIO): = 0, Disable the input change interrupt function of PBO pin. $=1$, Enable the input change interrupt function of PBO pin.
* Bit 1 (PBEI1) : = 0, Disable the input change interrupt function of PB1 pin. $=1$, Enable the input change interrupt function of PB1 pin.
* Bit 2 (PBEI2) : = 0, Disable the input change interrupt function of PB2 pin. = 1, Enable the input change interrupt function of PB2 pin.
* Bit 3 (PBEI3) : = 0, Disable the input change interrupt function of PB3 pin. = 1, Enable the input change interrupt function of PB3 pin.
* Bit 4 (PBEI4): = 0, Disable the input change interrupt function of PB4 pin. $=1$, Enable the input change interrupt function of PB4 pin.
* Bit 5 (PBEI5): $=0$, Disable the input change interrupt function of PB5 pin. $=1$, Enable the input change interrupt function of PB5 pin.
* Bit 6 (PBEI6) : = 0, Disable the input change interrupt function of PB6 pin.
$=1$, Enable the input change interrupt function of PB6 pin.
* Bit 7 (PBEI7): =0, Disable the input change interrupt function of PB7 pin. $=1$, Enable the input change interrupt function of PB7 pin.

- Prescaler of Timer0 and WDT Counter Register: FA

The FA register is readable.
The content of FA is the value of Prescaler Counter.

- Pull Down Control Register: FB

The FB register is both readable and writable.

* Bit 0 (/PDB4) : = 0, Enable the internal pull-down of PB4 pin.
$=1$, Disable the internal pull-down of PB4 pin.
* Bit 1 (/PDB5) : = 0, Enable the internal pull-down of PB5 pin.
= 1, Disable the internal pull-down of PB5 pin.
* Bit 2 (/PDB6) : = 0, Enable the internal pull-down of PB6 pin.
= 1, Disable the internal pull-down of PB6 pin.
* Bit 3 (/PDB7) : = 0, Enable the internal pull-down of PB7 pin.
$=1$, Disable the internal pull-down of PB7 pin.
* Bit 4 (/PDBO) : = 0, Enable the internal pull-down of PB0 pin.
$=1$, Disable the internal pull-down of PB0 pin.
* Bit 5 (/PDB1) : = 0, Enable the internal pull-down of PB1 pin.
= 1, Disable the internal pull-down of PB1 pin.
* Bit 6 (/PDB2) : = 0, Enable the internal pull-down of PB2 pin.
$=1$, Disable the internal pull-down of PB2 pin.
* Bit 7 (/PDB3) : = 0, Enable the internal pull-down of PB3 pin.
= 1, Disable the internal pull-down of PB3 pin.

- Open Drain Control Register: FC

The FC register is both readable and writable.

* Bit $0($ ODBO $):=0$, Disable the internal open-drain of PB0 pin.
= 1, Enable the internal open-drain of PB0 pin.
* Bit 1 (ODB1) : = 0, Disable the internal open-drain of PB1 pin.
= 1, Enable the internal open-drain of PB1 pin.
* Bit $2($ ODB2) : = 0, Disable the internal open-drain of PB2 pin.
= 1, Enable the internal open-drain of PB2 pin.
* Bit 3 : General register read / write bit.
* Bit 4 (ODB4) : = 0, Disable the internal open-drain of PB4 pin.
= 1, Enable the internal open-drain of PB4 pin.
* Bit 5 (ODB5) : = 0, Disable the internal open-drain of PB5 pin.
= 1, Enable the internal open-drain of PB5 pin.
* Bit 6 (ODB6) : = 0, Disable the internal open-drain of PB6 pin.
= 1, Enable the internal open-drain of PB6 pin.
* Bit 7 (ODB7) : = 0, Disable the internal open-drain of PB7 pin.
= 1, Enable the internal open-drain of PB7 pin.

- Pull High Control Register: FD

The FD register is both readable and writable.

* Bit $0(/ \mathrm{PHBO}): \quad=0$, Enable the internal pull-high of PBO pin.
= 1, Disable the internal pull-high of PB0 pin.
* Bit 1 (/PHB1) : = 0, Enable the internal pull-high of PB1 pin.
$=1$, Disable the internal pull-high of PB1 pin.
* Bit 2 (/PHB2) : = 0, Enable the internal pull-high of PB2 pin.
$=1$, Disable the internal pull-high of PB2 pin.
* Bit 3 : General register read / write bit.
* Bit 4 (/PHB4) : = 0, Enable the internal pull-high of PB4 pin.
= 1, Disable the internal pull-high of PB4 pin.
* Bit 5 (/PHB5) : = 0, Enable the internal pull-high of PB5 pin.
$=1$, Disable the internal pull-high of PB5 pin.
* Bit 6 (/PHB6) : = 0, Enable the internal pull-high of PB6 pin.
= 1, Disable the internal pull-high of PB6 pin.
* Bit 7 (/PHB7) : = 0, Enable the internal pull-high of PB7 pin.
$=1$, Disable the internal pull-high of PB7 pin.
- System Control Register: FE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	EIS	LVRE		LPRE	CONC		

The FE register is both readable and writable.

* Bit 0~1 : Not used.
* Bit $2(C O N C): \quad=1$, Enable Constant Sink Current Mode of PB1 / IR pin.

PB1 / IR Pin will provide constant output-low-sink current about 40mA when PB1
/ IR pin is configured as output mode.
$=0$, Disable Constant Sink Current Mode of PB1 / IR pin.

* Bit 3 (LPRE) : = 1, Enable Low Power reset.
= 0, Disable Low Power reset.
* Bit 4 : Not used.
* Bit 5 (LVRE) : = 1, Enable low voltage reset (Precise Low voltage reset selection by configuration word.).
$=0$, Disable low voltage reset (Precise Low voltage reset selection by configuration word.).
* Bit 6 (EIS) : = 1, External interrupt pin is selected. The I/O control bit of PB0 (bit 0 of F6) must be set to " 1 ", the status of INT pin can be read by reading PortB.
$=0, \mathrm{PBO}$ is bi-directional I/O pin.
* Bit 7(WDTE) : = 1, Enable Watchdog timer.
$=0$, Disable Watchdog timer.
- Interrupt Mask Register: FF

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
	WDTIE				EXIE	PBIE	TOIE

The FF register is both readable and writable.

* Bit 0 (TOIE) : = 1, Enable the Timer0 overflow interrupt.
= 0, Disable the Timer0 overflow interrupt.
* Bit 1 (PBIE) : = 1, Enable the PortB input change interrupt.
$=0$, Disable the PortB input change interrupt.
* Bit 2 (EXIE) : = 1, Enable the External INT pin interrupt.
$=0$, Disable the External INT pin interrupt.

[^0]* Bit 6 (WDTIE) : If the watchdog interrupt function is enabled by programming configuration word, $=1$, Enable watchdog interrupt.
$=0$, Disable watchdog interrupt.
* Bit 7 : Not used.

3.3 Special Function Registers (Addressed by SFUN, SFUNR Instruction)

- IR Control register: S6

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IR Clock (Fosc) Input					0: High Carry output	IR Output	IR function
Frequency Selection					1: Low Carry output	Frequency	o: Disable
0: 455 KHz						Secection	1: Enable
1: 3.58 MHz							

* The S 6 register is only writable.
* If Bit0 is set "1" to enable IR function, the IR / PB1 pin will be auto configured to output mode and output the data of PortB bit1 in IR function mode.
* The "High Carry Output " means to output high data with IR carry to IR / PB1 pin and the "Low Carry Output " is the opposite.

FIGURE 3.3: Timing Chart of IR Carry Output

- Table High-Order Byte Pointer register (TBHP): S7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
						D1	D0

* The S7 register is both readable and writable.
* The content of TBHP will associate with ACC to be loaded into PC bits<9:0> when program executes CALLA or GOTOA instruction. Additionally, the TBHP register is used for high part address to access ROM code data in executing the TABLE instruction.
- Table High-Order Byte Data register (TBH): S8

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		D5	D4	D3	D2	D1	D0

[^1]
3.4 RESET

This device may be reset in one of the following events:
(1) Power-on Reset: At power-up, this device will be kept in a reset condition until the power voltage on Reset pin has reached a logic high level.
(2) Reset pin is "LOW" state input (if Reset pin is configured as reset function.).
(3) WDT time-out reset (if WDT is enabled and WDT reset function is enabled.).
(4) Low voltage reset (if Low voltage function is enabled.).

The contents of registers after reset are listed below:

Address	Register	Power-On Reset	Reset or WDT Reset
00h	INAR	xxxx xxxx	uuuu uuuu
01h	Timer0	Xxxx xxxx	uuuu uuuu
02h	PCL	00000000	00000000
03h	STATUS	0001 1xxx	\#00\# \#uuu
04h	FSR	$11 \times x$ xxxx	11uu uuuu
06h	PortB	XXXX XXXX	uuuu uuuu
0Fh	Interrupt Status Register	-0-- -000	-0-- -000
10h-3Fh	General Storage Register	xxxx $x \times x \mathrm{x}$	uuuu uuuu
N/A	ACC	XXXX XXXX	uuuu uuuu
N/A	TOMODE	00111111	00111111
N/A	Control PortB I/O Reg (F6)	11111111	11111111
N/A	PortB Input Change Interrupt Control Register (F9)	11111111	11111111
N/A	Prescaler of Timer0 and WDT Register (FA)	11111111	11111111
N/A	Pull Down Control Register (FB)	11111111	11111111
N/A	Open Drain Control Register (FC)	00000000	00000000
N/A	Pull High Control Register (FD)	11111111	11111111
N/A	System Control Register (FE)	101- 00--	101- 00--
N/A	Interrupt Mask Register (FF)	-0-- -000	-0-- -000
N/A	IR Control register (S6)	0--- -000	0--- -000
N/A	Table High-Order Byte Pointer register (S7)	-----xx	---- - uu
N/A	Table High-Order Byte Data register (S8)	--XX XXXX	--uu uuuu

Note: $\mathrm{x}=$ unknown, $\mathrm{u}=$ unchanged, - = unimplemented, $\#=$ see the following table

TO / PD status after Reset:

Condition	Status: bit 7 RST	Status: bit 4 TO	Status: bit 3 PD
Power-on Reset	0	1	1
Reset pin Reset (Non-SLEEP)	0	u	u
Reset pin Wake-up Reset or Interrupt Wake-up from SLEEP	0	1	0
WDT Reset (Non-SLEEP)	0	0	1
WDT Wake-up Reset from SLEEP	0	0	0
PortB Input Change Interrupt Wake-up from SLEEP	1	1	0

Note: $\mathrm{u}=$ unchanged
TO / PD status is affected by events:

Event	Status: bit 4 TO	Status: bit 3 PD
Power-on	1	1
SLEEP instruction	1	0
CLRWDT instruction	1	1
WDT Time-out when WDT reset is enabled	0	u

Note: $\mathrm{u}=$ unchanged
WDT wake-up from sleep mode: Executing the SLEEP instruction can force this device entering into sleep mode (power saving mode). While system is in sleep mode, the WDT is cleared but keeps running. This device can be awakened by WDT time-out when WDT reset function is enabled or reset input on Reset pin.

The following figure is power-on reset circuit for slow VDD power-up:
D

- It is recommended the R value should be not greater than 40 k ohms to make sure the voltage of RSET pin can meet specification.
- The R1 value $=100$ ohms $\sim 1 \mathrm{~K}$ ohms will prevent high current, ESD or Electrical Overstress flowing into RESET pin.
- The diode helps discharge quickly when power down.

3.5 I/O Ports

The Port B is Bi-directional tri-state I/O ports. Port B is 8-pins I/O port. The Pin function of PB3 / Reset will be decided by Bit13 of the Configuration Word. If this bit is set " 1 ", the PB3 / Reset Pin will be assigned to Reset function (Default) and forced as input; if this bit is cleared to " 0 ", the PB3 / Reset Pin will be assigned to digital I/O function.

The Bit[2:0] of the Configuration Word can select oscillator mode. Besides, these bits can decide the pin function of PB5 and PB4.

The I/O Mode Register F6 (Port B) can configure these I/O pins as output or input. The Pull Down Control Register FB can enable corresponding internal pull-down of PB3 ~ PB0, PB7 ~ PB4. The Open Drain Control Register FC can enable open drain function of PB7 ~ PB4 and PB2 ~ PB0. The Pull High Control Register FD can enable internal pull-high of PB7 ~ PB4 and PB2 ~ PB0.

Setting PortB Input Change Interrupt Control Register F9 can enable input Status Change Interrupt / Wake-up function.

PBO also provide an external interrupt function by setting the EIS bit of the System Control Register FE. If the external interrupt function is enabled, the PBO Input change interrupt function will be disabled automatically.

FIGURE 3.4: PBO I INT Equivalent Circuit (Pull-down, pull-high and open-drain are not shown in the figure)

FIGURE 3.5: PB1, PB2, PB4~PB7 Equivalent Circuit (Pull-down, pull-high and open-drain are not shown in the figure)

FIGURE 3.6: PB3 Equivalent Circuit (Pull-down, pull-high and open-drain are not shown in the figure)

3.6 Real Time Clock (TIMERO) and Watchdog Timer

3.6.1 Timer0

Timer0 is an 8-bit timer / counter. The clock source of Timer0 can be from the internal clock or by an external clock source presented at the RTCC pin.

To select the internal clock source, bit 5 of the TOMODE register should be reset. In this mode, Timer0 will increase by 1 in every instruction cycle (without prescaler).

To select the external clock source, bit 5 of the TOMODE register should be set. In this mode, Timer0 will increase by 1 on every falling or rising edge of RTCC pin, which is controlled by bit 4 of TOMODE register.

3.6.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator. This RC oscillator is separated from the RC oscillator of the OSCI pin. That means the WDT will keep running even when the oscillator driver is turned off, such as in sleep mode. During normal operation or in sleep mode, a WDT time-out will cause the device reset and the TO bit (bit 4 of STATUS register) will be cleared.

Without prescaler, the WDT time-out period is 18 ms . This period can be increased by using the prescaler. The division ratio of prescaler is up to $1: 128$. Thus, the longest time-out period is approximately 2.3 s .

3.6.3 Prescaler

The 8-bit prescaler may be assigned to either the Timer0 or the WDT through the PSC bit (bit 3 of the TOMODE register). Setting this bit assigns the prescaler to the WDT. Resetting this bit assigns the prescaler to the Timer0. The PS2:PS0 bits determine the prescale ratio. When assigned to Timer0, the prescaler will be cleared by instructions which write to Timer0 Register. A CLRWDT instruction will clear the WDT and prescaler when assigned to WDT. The prescaler cannot be assigned to both the Timer0 and WDT simultaneously.

3.6.4 Switching Prescaler Assignment

The prescaler switch can be assigned by software control. To avoid an unintended RESET, the following program rule must be observed when changing the prescaler assignment from Timer0 to WDT:

```
CLRWDT
MOVIA b'xxxx1xxx'
CLRR TIMO
TOMODE
```

A CLRWDT instruction should be executed before changing the prescaler assignment from WDT to Timer0:

CLRWDT
MOVIA b'xxxx0xxx'
TOMODE

FIGURE 3.7: Block Diagram of Timer0 and WDT

3.7 Oscillator Configuration

This device supports six oscillator modes. The user can program the three Bit[2:0] of configuration word to select appropriate mode. These oscillator modes offered as:

- IRC: Internal Resistor and Capacitor oscillator.
- EXT-R: External Resistor and internal Capacitor oscillator.
- LF-XTAL: Low frequency crystal oscillator.
- XTAL: Standard crystal oscillator.
- HF-XTAL: High frequency crystal oscillator.
- ERC: External Resistor and Capacitor oscillator.

3.7.1 IRC Mode

The Internal Resistor and Capacitor mode (IRC) can be enabled by setting Bit[2:0] of configuration word and program Bit[5:3] to select output frequency of internal oscillator.

In IRC mode, PB5 / Xin / Rin pin will be assigned to PB5 digital I/O, PB4 / Xout pin will be assign to PB4 digital I/O or output instruction clock depend on the selection of configuration word Bit[2:0].

3.7.2 EXT-R Mode

In EXT-R mode adopts External resistor and internal capacitor to create oscillator so PB5 / Xin / Rin pin need to connect to Rext by setting Bit[2:0] and Bit[5:3] of configuration word to enter EXT-R mode and select oscillator frequency. Resistance value of Rext can be tuned to produce more precise oscillator's frequency. The recommended value of Rext is 200 K .

In EXT-R mode, PB4 / Xout pin will output instruction clock.

3.7.3 LF-XTAL, XTAL, HF-XTAL Mode

AM8EB series provide LF-XTAL, XTAL and HF-XTAL for different frequency crystal or ceramic oscillator. In these mode, a crystal or ceramic resonator is connected to Xin pin and Xout pin to create oscillation, refer to the specification of crystal or ceramic resonator to adopt appropriate C1, C2 or RS value.

TABLE 3.2: Capacitor Value for Crystal (VdD = 3V)

Mode	Freq.	C1 (pF)	C2 (pF)
HF-XTAL	20 MHz	$5 \sim 10$	$5 \sim 10$
	16 MHz	$5 \sim 10$	$5 \sim 10$
	10 MHz	$5 \sim 20$	$5 \sim 20$
	8 MHz	$5 \sim 20$	$5 \sim 20$
	4 MHz	$5 \sim 30$	$5 \sim 30$
	1 MHz	$5 \sim 30$	$5 \sim 30$
	455 KHz	$10 \sim 100$	$10 \sim 100$
LF-XTAL	100 KHz	$5 \sim 20$	$5 \sim 20$
	32.768 KHz	$5 \sim 30$	$5 \sim 30$

In LF-XTAL, XTAL or HF-XTAL mode, the Xin pin can be driven directly by an external clock source.

3.7.4 ERC Mode

The oscillator frequency of External Resistor and Capacitor Oscillator mode (ERC) will be influenced by the value of Rext, Cext, the supply voltage and the working temperature. In addition to these, the frequency will slightly vary between different chips due to the variation of manufacturing process parameter.

In order to keep stable oscillator frequency, the value of Rext should be less than 1 M ohm, the value of Cext should be greater than 20pF. In ERC mode, PB4 / Xout pin will output instruction clock.

TABLE 3.3: ERC Oscillator Frequency Table

Cext	Rext	OSC @ 3V	OSC @ 5V
20 pF	3.3 K	4.07 MHz	4.49 MHz
	5.1 K	3.08 MHz	3.19 MHz
	10 K	1.82 MHz	1.76 KHz
	100 K	227 KHz	201 KHz
100 pF	3.3 K	1.84 MHz	1.8 MHz
	5.1 K	1.29 MHz	1.22 MHz
	10 K	703 KHz	640 KHz
	100 K	79 KHz	69 KHz
	3.3 K	915 KHz	848 KHz
	5.1 K	622 KHz	567 KHz
	10 K	328 KHz	293 KHz
	100 K	35 KHz	30.7 KHz

ALPHA

3.8 Interrupts

The AM8EB051A has four sources of interrupt:

- Timer0 overflow
- PB input change
- External Interrupt Pin
- Watchdog time out Interrupt (If the function is enabled by setting the configuration word.).

Interrupt Status Register (R0F) is the interrupt flag register that recodes the interrupt requests in the relative flags. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Individual interrupts can be enabled / disabled through their corresponding enable bits in Interrupt Mask Register.

When one of the interrupt occurs, the next instruction will be fetched from address 008 H . Once in the interrupt service routine, the source of an interrupt can be determined by polling Interrupt Status Register (R0F). The interrupt flag bit must be cleared by program before leaving the interrupt service routine and before interrupts are enabled to avoid recursive interrupts. The RETFIE instruction exits the interrupt routine and enables the global interrupt.

The flag bit (except PBIF bit) in Interrupt Status Register is set by interrupt event regardless of the status of its mask bit or the execution of ENI. Reading the Interrupt Status Register will be the logic AND of the Interrupt Status Register and Interrupt Mask Register.

When an interrupt is generated by the INT instruction, the next instruction will be fetched from address 001h.

3.8.1 External INT Interrupt

External interrupt on INT pin is rising or falling edge triggered can be selected by INTEDG bit of TOMODE Register. When a valid edge appears on the INT pin, then the flag bit EXIF of the Interrupt Status Register is set. Clearing the EXIE bit of Interrupt Mask Register can disable this interrupt.

3.8.2 Timer0 Interrupt

An overflow (FFh \rightarrow 00h) in the Timer0 register will set the flag bit TOIF. Clearing TOIE bit of the Interrupt Mask Register can disable this interrupt.

3.8.3 Port B Input Change Interrupt

An input change on $\mathrm{PB}<7: 0>$ will set the flag bit PBIF. Clearing PBIE bit of the Interrupt Mask Register can disable this interrupt.

Setting the PortB Input Change Interrupt Control Register (F9) can enable the PortB Input Change Interrupt individually. Reading PortB is necessary before the port B input change interrupt is enabled. When the pin is configured as output or PBO pin is assigned as INT pin, the Input Change Interrupt function will be disabled. Additionally, the PB5 / Xin / Rin pin, PB4 / Xout pin and RB3 / Reset pin must be on digital I/O mode for PortB Input Change interrupt function.

3.8.4 Watchdog Timer out Interrupt

Programming configuration word can enable the watchdog interrupt function. If this function is enabled, a WDT time-out will set the flag bit WDTIF. Clearing WDTIE bit of the Interrupt Mask Register can disable this interrupt.

3.9 Power-Down Mode (Sleep)

Executing a SLEEP instruction enters power-down mode. When SLEEP instruction is executed, the PD bit of Status register will be cleared, the TO bit will be set, the Watchdog Timer will be cleared and keeps running, and the oscillator driver is turned off. All I/O pins maintain the status they had before the SLEEP instruction was executed.

3.9.1 Wake-up from SLEEP Mode

The device can wake-up from SLEEP mode through one of the following events.
(1) External reset input on Reset pin.
(2) WDT time-out reset or WDT time-out interrupt (depends on which one is enabled by setting configuration word.).
(3) Interrupt from RBO / NT pin, or PortB change interrupt (if enabled).

External reset input on Reset pin and WDT time-out reset will cause a device reset. The PD and TO bits can be used to determine the cause of device reset. The PD bit is set on power-up and is cleared when SLEEP instruction is executed. The TO bit is cleared if a WDT reset occurred.

An interrupt event is intended to wake-up the device, the corresponding interrupt function should be enabled before SLEEP. If ENI is executed before SLEEP, the program will branch to the interrupt address (008h) after wake-up. If DISI is executed before SLEEP, the device will continue execution at the instruction next to SLEEP instruction after wake-up.

3.10 Configuration Word

Bit	Name	Function
2,1,0	Fosc<2:0>	```= 000, EXT-R mode (External resistor and internal capacitor), PB5 / Xin Rin pin will connect to Rext and PB4 / Xout pin will output instruction clock. \(=001, \underline{\mathrm{IRC}}\) mode (Internal RC), PB5 / Xin / Rin pin will be assigned to PB5 and PB4 / Xout pin will output instruction clock. = 011, IRC mode (Internal RC), PB5 / Xin / Rin pin will be assigned to PB5 and PB4 / Xout pin will be assigned to PB4. \(=100\), LF-XTAL mode. \(=101, \underline{\text { XTAL }}\) mode . \(=110, \underline{\text { HF-XTAL }}\) mode. = 111, ERC mode (External RC), PB4 / Xout pin will output instruction clock (Default).```
5,4,3	IEF<2:0>	IRC / EXT-R frequency selection $\begin{aligned} & =000, \mathrm{IRC}=20 \mathrm{MHz} \\ & =001, \mathrm{IRC}=16 \mathrm{MHz} \\ & =010, \mathrm{IRC}=8 \mathrm{MHz} \\ & =011, \mathrm{IRC}=4 \mathrm{MHz} \\ & =100, \mathrm{IRC}=2 \mathrm{MHz} \\ & =101, \mathrm{IRC}=1 \mathrm{MHz} \\ & =110, \mathrm{IRC}=455 \mathrm{KHz} \\ & =111, \mathrm{IRC}=32 \mathrm{KHz} \text { (Default). } \end{aligned}$
6	WDTEN	= 1, Watchdog Timer enable (Default). = 0, Watchdog Timer disable.
7	WDTREN	= 1, Watchdog Timer reset enable (Default). $=0$, Watchdog Timer interrupt enable.
8	CLK	Instruction period selection $\begin{aligned} & =1 \text {, four oscillator periods (Default). } \\ & =0, \text { two oscillator periods. } \end{aligned}$

Bit	Name	Function
11,10,9	LVR<2:0>	Precise Low voltage reset selection $=001$, enable, LVR voltage $=2.0 \mathrm{~V}$. $=010$, enable, LVR voltage $=2.6 \mathrm{~V}$. $=011$, enable, LVR voltage $=2.8 \mathrm{~V}$. $=100$, enable, LVR voltage $=3.2 \mathrm{~V}$. $=101$, enable, LVR voltage $=3.6 \mathrm{~V}$. $=110$, enable, LVR voltage= 4.3 V . = 111, disable (Default).
12	PB3ENB	Pin Function Selection of PB3 / Reset = 1, assigned to Reset function and force PB3 / Reset to input Pin (Default). $=0$, assigned to PB3 digital I/O function.
13	Code-protect	= 1 , EPROM unprotected (Default). = 0, EPROM protected.

ALPHA

4. Instruction Set

AM8EB051A include total 55 instructions, and summarized in the following table.

Mnemonic Operands	Description	Cycles	Instruction Code				Status Affected
NOP	No operation	1	00	0000	0000	0000	-
SLEEP	Go into standby mode	1	00	0000	0000	0001	TO, PD
CLRWDT	Clear Watchdog Timer	1	00	0000	0000	0010	TO, PD
TOMODE	Load TOMODE Register	1	00	0000	0000	0011	-
ENI	Enable Interrupt	1	00	0000	0000	0100	-
IOST F	Load IOST Register	1	00	0000	0000	ffff	-
RET	Return from subroutine	2	00	0000	0001	0000	-
RETIE	Return from interrupt, Enable Interrupt	2	00	0000	0001	0001	-
DAA	Decimal Adjust ACC	1	00	0000	0001	0010	C
DISI	Disable Interrupt	1	00	0000	0001	0011	-
TOMODER	Move TOMODE Register to ACC	1	00	0000	0001	0100	-
IOSTR F	Move IOST Register to ACC	1	00	0000	0001	ffff	-
SFUN S	Load SFUN Register	1	00	0000	0010	ssss	-
SFUNR S	Move SFUN Register to ACC	1	00	0000	0011	ssss	-
MOVAR R	Move ACC to R	1	00	0000	1 rrr	rrrr	-
MOVR R, d	Move R	1	00	0001	drrr	rrrr	Z
CLRA	Clear ACC	1	00	0010	0000	0000	Z
INT	S/W interrupt	3	00	0010	0001	0000	-
TABLEA	Read ROM Code to TBH and ACC	2	00	0010	0001	0001	-
CALLA	Call subroutine	2	00	0010	0001	0010	-
GOTOA	Unconditional branch	2	00	0010	0001	0011	-
CLRR R	Clear R	1	00	0010	1 rrr	rrrr	Z
ADDAR R, d	Add ACC and R	1	00	0011	drrr	rrrr	C, DC, Z
SUBAR R, d	Subtract ACC from R	1	00	0100	drrr	rrrr	C, DC, Z
INCR R, d	Increment R	1	00	0101	drrr	rrrr	Z
DECR R, d	Decrement R	1	00	0110	drrr	rrrr	Z
COMR R, d	Complement R	1	00	0111	drrr	rrrr	Z
ANDAR R, d	AND ACC with R	1	00	1000	$d r r r$	rrrr	Z
IORAR R, d	Inclusive OR ACC with R	1	00	1001	drrr	rrrr	Z
XORAR R, d	Exclusive OR ACC with R	1	00	1010	drrr	rrrr	Z
RRR R, d	Rotate right R	1	00	1011	drrr	rrrr	C

Mnemonic Operands	Description	Cycles	Instruction Code	Status Affected
RLR R, d	Rotate left R	1	001100 drrr rrrr	C
SWAPR R, d	Swap halves R	1	001101 drrr rrrr	-
INCRSZ R, d	Increment R, Skip if 0	$\begin{gathered} 1 \text { or } \\ \text { 2(skip) } \\ \hline \end{gathered}$	001110 drrr rrrr	-
DECRSZ R, d	Decrement R , Skip if 0	$\begin{gathered} 1 \text { or } \\ 2 \text { (skip) } \end{gathered}$	001111 drrr rrrr	-
RETIA I	Return, place immediate in A	2	010000 iiii iiii	-
MOVIA I	Move immediate to ACC	1	010001 iiii iiii	-
ANDIA I	AND immediate with ACC	1	010010 iiii iiii	Z
IORIA I	Inclusive OR immediate with ACC	1	010011 iiii iiii	Z
XORIA I	Exclusive OR immediate with ACC	1	010100 iiii iiii	Z
ADDIA I	Add ACC and immediate	1	010101 iiii iiii	C, DC, Z
ADCIA I	Add ACC and immediate with Carry	1	010110 iiii iiii	C, DC, Z
SUBIA I	Subtract ACC from immediate	1	010111 iiii iiii	C, DC, Z
SBCIA I	Subtract ACC and Carry from immediate	1	011000 iiii iiii	C, DC, Z
CALL I	Call subroutine	2	011001 iiii iiii	-
GOTO I	Unconditional branch	2	01 101i iiii iiii	-
ADCAR R, d	Add ACC and R with Carry	1	011100 drrr rrrr	C, DC, Z
SBCAR R, d	Subtract ACC and Carry from R	1	011101 drrr rrrr	C, DC, Z
CMPAR R	Compare R with ACC	1	011110 1rrr rrrr	C, Z
BCR R, bit	Clear bit in R	1	10 11bb brrr rrrr	-
BSR R, bit	Set bit in R	1	10 10bb brrr rrrr	-
BTRSC R, bit	Test bit in R and skip if clear	$\begin{gathered} 1 \text { or } \\ 2 \text { (skip) } \end{gathered}$	10 01bb brrr rrrr	-
BTRSS R, bit	Test bit in R and skip if set	$\begin{gathered} 1 \text { or } \\ \text { 2(skip) } \\ \hline \end{gathered}$	10 00bb brrr rrrr	-
LCALL I	Call subroutine	2	11 0iii iiii iiii	-
LGOTO I	Unconditional branch	2	11 1iii iiiii iiii	-
Legend:		g Timer ator low bit r_{0}) sult is sto	R : Register address TOMODE : TOMODE regis IOST : I/O port control reg DC : Digital carry flag $F:\left(f_{3} f_{2} f_{1} f_{0}\right) 5 \sim f$: Destination in the ACC register. back in register R.	

ADCAR (Add ACC and R with Carry)	
Syntax:	ADCAR R, d
Operands:	$0 \leq R \leq 127$
	$d \in[0,1]$
Operation:	$A C C+R+C \rightarrow$ dest
Status Affected:	$C, D C, Z$

Description: Add the contents of the ACC register and register ' R ' with Carry. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is ' 1 ', the result is stored back in register ' R '.

Cycles: 1

ADCIA (Add ACC and Immediate with Carry)

Syntax:
ADCIA I
Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: $\quad \mathrm{ACC}+\mathrm{I}+\mathrm{C} \rightarrow \mathrm{ACC}$
Status Affected:
C, DC, Z
Description: Add the contents of the ACC register and the 8-bit immediate 'l' with Carry. The result is placed in the ACC register.

Cycles: 1

ADDAR (Add ACC and R)

Syntax: \quad ADDAR R, d
Operands: $\quad 0 \leq R \leq 127$
$\mathrm{d} \in[0,1]$
Operation: \quad ACC $+\mathrm{R} \rightarrow$ dest
Status Affected: C, DC, Z
Description: Add the contents of the ACC register and register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is ' 1 ', the result is stored back in register ' R '.

ADDIA (Add ACC and Immediate)

Syntax: ADDIA I
Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: $\quad \mathrm{ACC}+\mathrm{I} \rightarrow \mathrm{ACC}$
Status Affected: C, DC, Z
Description: Add the contents of the ACC register with the 8 -bit immediate ' I '. The result is placed in the ACC register

Cycles: 1

ANDAR (AND ACC and R)
Syntax: \quad ANDAR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad \mathrm{ACC}$ and $\mathrm{R} \rightarrow$ dest
Status Affected: Z
Description: The contents of the ACC register are AND'ed with register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is ' 1 ', the result is stored back in register 'R'.

Cycles: 1

ANDIA (AND Immediate with ACC)

yntax: ANDIA I

Operands: $0 \leq \mathrm{I} \leq 255$
Operation: \quad ACC AND I \rightarrow ACC
Status Affected: Z
Description: The contents of the ACC register are AND'ed with the 8 -bit immediate ' I '. The result is placed in the ACC register.

BCR (Clear Bit in R)

Syntax: \quad BCR R, b
Operands: $\quad 0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: $\quad 0 \rightarrow \mathrm{R}<\mathrm{b}>$
Status Affected: None
Description: Clear bit 'b' in register ' R '.
Cycles: 1

BSR (Set Bit in R)

Syntax: \quad BSR R, b
Operands: $\quad 0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: $\quad 1 \rightarrow \mathrm{R}<\mathrm{b}>$
Status Affected: None
Description: Set bit 'b' in register ' R '.
Cycles: 1

BTRSC (Test Bit in R, Skip if Clear)

Syntax:
Operands:
BTRSC R, b
$0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: \quad Skip if $R=0$
Status Affected: None
Description: If bit ' b ' in register ' R ' is 0 , the next instruction is skipped. If bit ' b ' is 0 , the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead making this a 2-cycle instruction.

BTRSS (Test Bit in R, Skip if Set)

Syntax: BTRSS R, b
Operands: $\quad 0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: \quad Skip if $R=1$
Status Affected: None
Description: If bit ' b ' in register ' R ' is ' 1 ', the next instruction is skipped. If bit ' b ' is ' 1 ', the next instruction fetched during the current instruction execution, is discarded and a NOP is executed instead, making this a 2-cycle instruction.

Cycles: 1(2)

CALL (Call Subroutine)

Syntax:
Operands: $0 \leq 1 \leq 255$
Operation: $\quad \mathrm{PC}+1 \rightarrow$ Top of Stack;
Status<5> \rightarrow PC<9>
" 0 " \rightarrow PC<8>
$I \rightarrow P C<7: 0>$
Status Affected: None
Description: Subroutine call. First, return address (PC+1) is pushed onto the stack. The 8-bit immediate address is loaded into PC bits <7:0>. The Status $<5>$ load into $\mathrm{PC}<9>, \mathrm{PC}<8>$ is cleared. CALL is a two-cycle instruction.

CALLA (Call Subroutine)

Syntax:
CALLA
Operands: None
Operation: $\quad \mathrm{PC}+1 \rightarrow$ Top of Stack;
$\{[$ TBHP], $[A C C]\} \rightarrow \quad P C<9: 0>$
Status Affected: None
Description: Subroutine call. First, return address (PC+1) is pushed onto the stack. The content of TBHP and ACC is loaded into PC bits $<9: 0>$. CALLA is a two-cycle instruction.

Cycles: 2

CLRA (Clear ACC)

Syntax:	CLRA
Operands:	None
Operation:	$00 \mathrm{~h} \rightarrow \mathrm{ACC} ;$
	$1 \rightarrow \mathrm{Z}$
Status Affected:	Z

Description: The ACC register is cleared. Zero bit (Z) is set. Cycles: 1

CLRR (Clear R)

Syntax: \quad CLRR R

Operands: $\quad 0 \leq R \leq 127$
Operation: $\quad 00 \mathrm{~h} \rightarrow \mathrm{R}$;
$1 \rightarrow$ Z
Status Affected: Z
Description: The contents of register ' R ' are cleared and the Z bit is set.

CLRWDT (Clear Watchdog Timer)

Syntax: CLRWDT
Operands: None
Operation: $\quad 00 \mathrm{~h} \rightarrow$ WDT;
00h \rightarrow WDT prescaler (if assigned);
$1 \rightarrow$ TO;
$1 \rightarrow \mathrm{PD}$
Status Affected: TO, PD
Description: The CLRWDT instruction resets the WDT. It also resets the prescaler if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set.

Cycles: 1

COMR (Complement R)

Syntax:	COMR R, d
Operands:	$0 \leq R \leq 127$
	$d \in[0,1]$
Operation:	$\sim R \rightarrow$ dest
Status Affected:	Z

Description: The contents of register ' R ' are complemented. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

CMPAR (Compare ACC and R)

Syntax:
Operands: $\quad 0 \leq R \leq 127$
Operation: R-ACC
Status Affected: C, Z
Description: Compare ACC and R. Subtract (2's complement method) the ACC register from register ' R ' that will not change the content of $A C C$ and R.

Cycles: 1

DAA (Adjust ACC's data format from HEX to DEC)

Syntax: DAA
Operands: None
Operation: If $[A C C<3: 0 \gg 9]$ or $[D C=1]$ then $A<3: 0>+$ $6 \rightarrow \quad \mathrm{ACC}<3: 0>$; If $[A C C<7: 4 \gg 9]$ or $[C=1]$ then $A<7: 4>+6$ \rightarrow ACC $<7: 4>$

Status Affected: C
Description: Convert the ACC data from hexadecimal to decimal format after addition operation and restored to ACC. DAA instruction must be placed at the next Instruction of addition operation.

Cycles: 1

DECR (Decrement R)
Syntax: DECR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad \mathrm{R}-1 \rightarrow$ dest
Status Affected: Z
Description: Decrement register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

DECRSZ (Decrement R, Skip if 0)

Syntax: DECRSZ R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad \mathrm{R}-1 \rightarrow$ dest; skip if result $=0$
Status Affected: None
Description: The contents of register ' R ' are decremented. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '. If the result is 0 , the next instruction which is already fetched is discarded and a NOP is executed instead making it a two-cycle instruction.

DISI (Disable Interrupt)

Syntax: DISI
Operands: None
Operation: $\quad 0 \rightarrow$ INT;
Status Affected: None
Description: Disable global interrupt.
Cycles: 1

ENI (Enable Interrupt)

Syntax: ENI

Operands: None
Operation: $\quad 1 \rightarrow$ INT;
Status Affected: None
Description: Enable global interrupt.
Cycles: 1

GOTO (Unconditional Branch)
Syntax: GOTO I
Operands: $\quad 0 \leq \mathrm{I} \leq 511$
Operation: Status<5> \rightarrow PC<9>
$\mathrm{I} \rightarrow \mathrm{PC}<8: 0>$
Status Affected: None
Description: GOTO is an unconditional branch. The 9-bit immediate address is loaded into PC bits <8:0>. $\mathrm{PC}<9>$ is loaded from the Status $<5>$. GOTO is a two-cycle instruction.

Cycles: 2

GOTOA (Unconditional Branch)

Syntax:	GOTOA
Operands:	None
Operation:	$\{[$ TBHP], [ACC]\} \rightarrow
$P C<9: 0>$	

Status Affected: None
Description: GOTOA is an unconditional branch. The content of TBHP and ACC is loaded into PC bits $<9: 0$ >. GOTOA is a two-cycle instruction.

Cycles: 2

INCR (Increment R)

Syntax:	INCR R, d
Operands:	$0 \leq R \leq 127$
	$d \in[0,1]$
Operation:	$R+1 \rightarrow$ dest
Status Affected:	Z

Description: The contents of register ' R ' are incremented. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '.

Cycles: 1

INCRSZ (Increment R, Skip if 0)

Syntax: INCRSZ R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad \mathrm{R}+1 \rightarrow$ dest, skip if result $=0$
Status Affected: None
Description: The contents of register ' R ' are incremented. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1, the result is placed back in register ' R '. If the result is 0 , the next instruction which is already fetched is discarded and a NOP is executed instead making it a two-cycle instruction.

INT (S/W Interrupt)

Syntax: INT
Operands: None
Operation: $\quad \mathrm{PC}+1 \rightarrow$ Top of Stack,
001h \rightarrow PC
Status Affected: None
Description: Interrupt subroutine call. First, return address (PC+1) is pushed onto the stack. The address 001h is loaded into PC bits <9:0>.

Cycles: 3

IORAR (OR ACC with R)

Syntax: IORAR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: \quad ACC or $R \rightarrow$ dest
Status Affected: Z
Description: Inclusive OR the ACC register with register 'R'. If ' d ' is 0 the result is placed in the ACC register. If ' d ' is 1 the result is placed back in register ' R '.

Cycles: 1

IORIA (OR Immediate with ACC)

Syntax: IORIA I
Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: \quad ACC or $I \rightarrow$ ACC
Status Affected: Z
Description: The contents of the ACC register are OR'ed with the 8 -bit immediate ' 1 '. The result is placed in the ACC register.

Cycles: 1(2)

IOST (Load IOST Register)

Syntax: IOST F
Operands: $\quad F=5,6,7 \ldots f$
Operation: \quad ACC \rightarrow IOST register F
Status Affected: None
Description: IOST register ' F ' ($F=5,6,7 \ldots$) is loaded with the contents of the ACC register.

Cycles: 1

LGOTO (Unconditional Branch)

Syntax: LGOTO I
Operands: $\quad 0 \leq \mathrm{I} \leq 2047$
Operation: $\quad \mathrm{I} \rightarrow \mathrm{PC}<10: 0>$
Status Affected: None
Description: LGOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits $<10: 0>$. LGOTO is a two-cycle instruction.

Cycles: 2

MOVAR (Move ACC to R)

Syntax: MOVAR R

Operands: $0 \leq R \leq 127$
Operation: \quad ACC $\rightarrow \mathrm{R}$
Status Affected: None
) Description: Move data from the ACC register to register 'R'.

$$
\text { Cycles: } 1
$$

Cycles: 1

LCALL (Call Subroutine)

Syntax: LCALL I
Operands: $0 \leq \mathrm{I} \leq 2047$
Operation: $\quad \mathrm{PC}+1 \rightarrow$ Top of Stack;
$\mathrm{I} \rightarrow \mathrm{PC}<10: 0>$
Status Affected: None
Description: Subroutine call. First, return address ($\mathrm{PC}+1$) is pushed onto the stack. The 11-bit immediate address is loaded into PC bits $<10: 0>$. LCALL is a two-cycle instruction.

MOVIA (Move Immediate to ACC)

Syntax: MOVIA I

Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: $\quad I \rightarrow$ ACC
Status Affected: None
Description: The 8 -bit immediate ' l ' is loaded into the ACC register. The don't cares will assemble as 0s.

Cycles: 1

MOVR (Move R)

Syntax:	MOVR R, d
Operands:	$0 \leq R \leq 127$
	$d \in[0,1]$
Operation:	$R \rightarrow$ dest
Status Affected:	Z

Description: The contents of register ' R ' are moved to destination ' d '. If ' d ' is 0 , destination is the ACC register. If ' d ' is 1 , the destination is file register ' R '. ' d ' is 1 is useful to test a file register since status flag Z is affected

Cycles: 1

NOP (No Operation)

Syntax: NOP
Operands: None
Operation: No operation
Status Affected: None
Description: No operation.
Cycles: 1

RETIE (Return from Interrupt, Enable Interrupt)

Syntax: RETIE

Operands: None
Operation: \quad Top of Stack \rightarrow PC
Status Affected: None
Description: The program counter is loaded from the top of the stack (the return address) and enable Interrupt function. This is a two-cycle instruction.

Cycles: 2

RETIA (Return with Immediate in ACC)

Syntax: RETIAI

Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: $\quad \mathrm{I} \rightarrow \mathrm{ACC}$;
Top of Stack \rightarrow PC
Status Affected: None
Description: The ACC register is loaded with the 8 -bit immediate ' I '. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

Cycles: 2

RET (Return from Subroutine)

Syntax: RET
Operands: None
Operation: \quad Top of Stack $\rightarrow \quad$ PC
Status Affected: None
Description: The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

Cycles: 2

RLR (Rotate Left fthrough Carry)

Syntax:	$R L R R, d$
Operands:	$0 \leq R \leq 127$
	$d \in[0,1]$
Operation:	$R<7>\rightarrow C ;$
	$R<6: 0>\rightarrow$ dest $<7: 1>;$
	$C \rightarrow$ dest $<0>$
Status Affected:	C

Description: The contents of register ' R ' are rotated one bit to the left through the Carry Flag. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is stored back in register 'R'.

RRR (Rotate Right fthrough Carry)

Syntax: \quad RRR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad C \rightarrow$ dest<7>;
$R<7: 1>\rightarrow$ dest<6:0>;
$R<0>\rightarrow C$
Status Affected: C
Description: The contents of register ' R ' are rotated one bit to the right through the Carry Flag. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '.

Cycles: 1

SBCAR (Subtract ACC and Carry from R)

Syntax: \quad SBCAR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad \mathrm{R}-\mathrm{ACC}-\mathrm{C} \rightarrow$ dest
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC and Carry register from register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register 'R'.

Cycles: 1

SBCIA (Subtract ACC and Carry from Immediate)

Syntax: SBCIA I

Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: I-ACC-C \rightarrow ACC
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC register and Carry from the 8 -bit immediate ' I '. The result is placed in the ACC register.

Cycles: 1

SFUN (Load SFUN Register)

Syntax: SFUN S

Operands: $\quad S=0,1,2 \ldots$
Operation: \quad ACC \rightarrow SFUN register S
Status Affected: None
Description: SFUN register ' S ' $(\mathrm{S}=0,1,2 \ldots$) is loaded with the contents of the ACC register.

Cycles: 1

SFUNR (Move SFUN Register to ACC)

Syntax:
Operands: $\quad S=0,1,2 \ldots$
Operation: \quad SFUN register $S \rightarrow A C C$
Status Affected: None
Description: Move the contents of SFUN register 'S' (S= $0,1,2 \ldots$) to ACC register.

Cycles: 1

SLEEP (Enter SLEEP Mode)

Syntax:
SLEEP
Operands: None
Operation: $\quad 00 \mathrm{~h} \rightarrow$ WDT;
00h \rightarrow WDT prescaler;
$1 \rightarrow$ TO;
$0 \rightarrow$ PD
Status Affected: TO, PD
Description: Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its prescaler are cleared. The processor is put into SLEEP mode.

SUBAR (Subtract ACC from R)

Syntax: \quad SUBAR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\quad \mathrm{R}-\mathrm{ACC} \rightarrow$ dest
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC register from register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register 'R'.

Cycles: 1

SUBIA (Subtract ACC from Immediate)

Syntax: SUBIA I
Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: \quad I-ACC \rightarrow ACC
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC register from the 8 -bit immediate ' I '. The result is placed in the ACC register.

Cycles: 1

SWAPR (Swap nibbles in R)

Syntax: SWAPR R, d
Operands: $\quad 0 \leq R \leq 127$
$\mathrm{d} \in[0,1]$
Operation: $\quad \mathrm{R}<3: 0>\rightarrow$ dest<7:4>;
$R<7: 4>\rightarrow$ dest<3:0>
Status Affected: None
Description: The upper and lower nibbles of register ' R ' are exchanged. If ' d ' is 0 , the result is placed in ACC register. If ' d ' is 1 , the result in placed in register 'R'.

TABLEA (Read ROM Code to TBH and ACC)

Syntax: TABLEA
Operands: None
Operation: \quad ROM code $\{[$ TBHP], [ACC] $\}<7: 0>\rightarrow$ ACC ROM code $\{[$ TBHP],[ACC] $\}<13: 8>\rightarrow$ TBH

Status Affected: None
Description: Move the low byte of the addressed ROM code to ACC and move the high byte of the addressed ROM code to TBH.

Cycles: 2

TOMODE (Load TOMODE Register)

Syntax: TOMODE

Operands: None
Operation: \quad ACC \rightarrow TOMODE
Status Affected: None
Description: The content of the ACC register is loaded into the TOMODE register.

Cycles: 1

TOMODER (Move TOMODE Register to ACC)

Syntax: TOMODER
Operands: None
Operation: TOMODE \rightarrow ACC
Status Affected: None
Description: Move the content of TOMODE register to ACC register.

Cycles: 1

XORAR (Exclusive OR ACC with R)

Syntax: XORAR R, d
Operands: $\quad 0 \leq R \leq 127$
$d \in[0,1]$
Operation: \quad ACC xor $R \rightarrow$ dest
Status Affected: Z
Description: Exclusive OR the contents of the ACC register with register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

XORIA (Exclusive OR Immediate with ACC)

Syntax:
XORIA I
Operands: $\quad 0 \leq \mathrm{I} \leq 255$
Operation: \quad ACC xor I \rightarrow ACC
Status Affected: Z
Description: The contents of the ACC register are XOR'ed with the 8 -bit immediate ' I '. The result is placed in the ACC register.

Cycles: 1

5. Electrical Characteristics

5.1 Absolute Maximum Rating

Symbol	Rating	Unit
VDD \sim Vss	$-0.5 \sim+6.0$	V
Vin	Vss- $0.3<$ Vin $<$ VDD +0.3	V
Vout	GND $<$ Vout $<$ VDD	V
Top (operating)	$0 \sim+70$	${ }^{\circ} \mathrm{C}$
Tst (storage)	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

5.2 DC Characteristics (Top $=25^{\circ} \mathrm{C}$)

Symbol	Description	Condition	Min.	Typ.	Max.	Unit
VDD1	Operating voltage range	20MHz at HF-XTAL	2.6	3	5.5	V
VDD2		4 MHz at XTAL	2.2	3	5.5	
VDD3		32 kHz at LF-XTAL	2.0	3	5.5	
FHF	HF-XTAL mode freq., VDD=5V	Four oscillator periods			20	MHz
	HF-XTAL mode freq., VDD $=3 \mathrm{~V}$				20	
FXT	XTAL mode freq., VDD $=5 \mathrm{~V}$	Four oscillator periods			10	MHz
	XTAL mode freq., VDD $=3 \mathrm{~V}$				10	
FLF	LF-XTAL mode freq., VDD=5V	Four oscillator periods			400	KHz
	LF-XTAL mode freq., VDD=3V				400	
Ferc	ERC mode freq., VDD=5V	Rext=1Kohm; Cext=3.3pF			11.9	MHz
	ERC mode freq., VDD=3V				7.7	
Vih	Input high voltage, VDD=5V	I/O port	2.0			V
		PB0 port	4.0			
		RTCC	4.0			
		RESET	3.3			
	Input high voltage, VDD=3V	I/O port	1.5			
		PB0 port	2.5			
		RTCC	2.4			
		RESET	2			
Vil	Input low voltage, VDD=5V	I/O port			1.0	V
		PB0 port			1.0	
		RTCC			1.0	
		RESET			0.4	
	Input low voltage, VDD=3V	I/O port			0.5	
		PB0 port			0.5	
		RTCC			0.5	
		RESET			0.3	
Voh	Output high voltage, VDD=5V	Ioh= -14 mA	4.0			V
	Output high voltage, VDD=3V		1.6			
Vol	Output low voltage, VDD=5V	$\mathrm{lol}=14 \mathrm{~mA}$			0.4	V
	Output low voltage, VDD=3V				0.5	
Ioh	I/O Port Output high current, VDD=5V	Voh= 4.0 V		-18		mA
	I/O Port Output high current, VDD=3V	Voh= 2.0 V		-12		

Symbol	Description	Condition	Min.	Typ.	Max.	Unit
Iol	I/O Port Output low current, VDD=5V	Vol= 1.0V		76		
	I/O Port Output low current, VDD=3V	Vol= 1.0V		42		
Icol	PB1 / IR constant output low current, VDD=5V	$\mathrm{Vol}=1.0 \mathrm{~V}$		46		mA
	PB1 / IR constant output low current, VDD $=3 \mathrm{~V}$	Vol=1.0V		42		
	PB1 / IR constant output low current, VDD=2.4V	$\mathrm{Vol}=1.0 \mathrm{~V}$		41		
lil	Internal Pull-high current, VDD=5V	Input pin at Vss		-55		uA
	Internal Pull-high current, VDD=3V			-18		
lih	Internal Pull-low current, VDD=5V	Input pin at VDD		35		uA
	Internal Pull-low current, VDD=3V			11		
Isb	Power-down current, VDD=5V	Sleep mode, WDT enable		8		uA
		Sleep mode, WDT disable		1		
	Power-down current, VDD=3V	Sleep mode, WDT enable		2		
		Sleep mode, WDT disable		1		
Iop1	HF-XTAL, VDD=5V, 4 clock Instruction (WDT enable)	20MHz		4.4		mA
		16 MHz		3.6		
		10 MHz		2.4		
	HF-XTAL, VDD=3V, 4 clock Instruction (WDT enable)	20MHz		2.6		mA
		16 MHz		2.1		
		10 MHz		1.4		
	XTAL, VDD=5V, 4 clock Instruction (WDT enable)	8MHz		1.9		mA
		4MHz		1.0		
		1 MHz		604		uA
		455 KHz		388		
	XTAL, VDD=3V, 4 clock Instruction (WDT enable)	8MHz		1.1		mA
		4 MHz		575		uA
		1 MHz		252		
		455 KHz		140		
	LF-XTAL, VDD $=5 \mathrm{~V}, 4$ clock Instruction (WDT enable)	32.768 KHz		31		uA
	LF-XTAL, VDD=3V, 4 clock Instruction (WDT disable)	32.768 KHz		11		
Iop2	IRC mode VDD=5V, 4 clock Instruction (WDT enable)	20MHz		6.9		mA
		16 MHz		5.5		
		8 MHz		2.9		
		4 MHz		1.7		
		2 MHz		964		uA
		1 MHz		604		
		455 KHz		383		
		32.768 KHz		51		
	IRC mode, VDD=3V, 4 clock Instruction (WDT enable)	20 MHz		3.8		mA
		16 MHz		3.8		
		8 MHz		1.7		
		4 MHz		984		uA
		2 MHz		548		
		1 MHz		327		
		455 KHz		196		
		32.768 KHz		25		

Symbol	Description	Condition			Min.	Typ.	Max.	Unit
Iop3	ERC mode, VDD=5V, 4 clock Instruction (WDT enable)	Cext	Rext	OSC Freq.				
		3.3p	1K	$\mathrm{F}=11.9 \mathrm{MHz}$		6.9		mA
			3.3K	$\mathrm{F}=6.7 \mathrm{MHz}$		3.2		
			5.1K	$\mathrm{F}=4.9 \mathrm{MHz}$		2.3		
			10K	$\mathrm{F}=2.8 \mathrm{MHz}$		1.3		
			100K	$\mathrm{F}=344 \mathrm{KHz}$		171		uA
		20p	1K	$\mathrm{F}=9.3 \mathrm{MHz}$		6		mA
			3.3K	$\mathrm{F}=4.5 \mathrm{MHz}$		2.4		
			5.1K	$\mathrm{F}=3.2 \mathrm{MHz}$		1.7		
			10K	$\mathrm{F}=1.7 \mathrm{MHz}$		915		uA
			100K	$\mathrm{F}=201 \mathrm{KHz}$		121		
		100p	1K	$\mathrm{F}=4.5 \mathrm{MHz}$		4.3		mA
			3.3K	$\mathrm{F}=1.8 \mathrm{MHz}$		1.5		
			5.1K	$\mathrm{F}=1.2 \mathrm{MHz}$		998		uA
			10K	$\mathrm{F}=640 \mathrm{KHz}$		526		
			100K	$\mathrm{F}=69 \mathrm{KHz}$		73		
		300p	1K	$\mathrm{F}=2.3 \mathrm{MHz}$		3.5		mA
			3.3K	$\mathrm{F}=848 \mathrm{KHz}$		1.1		
			5.1K	$\mathrm{F}=567 \mathrm{KHz}$		750		uA
			10K	$\mathrm{F}=293 \mathrm{KHz}$		392		
			100K	$\mathrm{F}=31 \mathrm{KHz}$		59		
	ERC mode, VDD=3V, 4 clock Instruction (WDT enable)	3.3p	1K	$\mathrm{F}=7.7 \mathrm{MHz}$		3.3		mA
			3.3K	$\mathrm{F}=5.5 \mathrm{MHz}$		1.7		
			5.1K	$\mathrm{F}=4.4 \mathrm{MHz}$		1.3		
			10K	$\mathrm{F}=2.8 \mathrm{MHz}$		781		uA
			100K	$\mathrm{F}=382 \mathrm{KHz}$		109		
		20p	1K	$\mathrm{F}=6.5 \mathrm{MHz}$		3.1		mA
			3.3K	$\mathrm{F}=4.1 \mathrm{MHz}$		1.4		
			5.1K	$\mathrm{F}=3.1 \mathrm{MHz}$		1		
			10K	$\mathrm{F}=1.8 \mathrm{MHz}$		574		uA
			100K	$\mathrm{F}=227 \mathrm{KHz}$		76		
		100p	1K	$\mathrm{F}=3.9 \mathrm{MHz}$		2.6		mA
			3.3K	$\mathrm{F}=1.8 \mathrm{MHz}$		945		uA
			5.1K	$\mathrm{F}=1.3 \mathrm{MHz}$		639		
			10K	$\mathrm{F}=703 \mathrm{KHz}$		338		
			100K	$\mathrm{F}=78 \mathrm{KHz}$		45		
		300p	1K	$\mathrm{F}=2.3 \mathrm{MHz}$		2.2		mA
			3.3K	$\mathrm{F}=915 \mathrm{KHz}$		729		uA
			5.1K	$\mathrm{F}=623 \mathrm{KHz}$		484		
			10K	$\mathrm{F}=328 \mathrm{KHz}$		253		
			100K	$\mathrm{F}=35 \mathrm{KHz}$		35		

PA, PB: loh vs Voh , VDD=5V $\left(25^{\circ} \mathrm{C}\right)$

PA, PB: loh vs Voh , VDD=3V $\left(25^{\circ} \mathrm{C}\right)$

6. Ordering Information

P/N	Package Type	Pin Count	Package Size
AM8EB051A	Die	10	-

Note: For more package information, please contact Alpha.

[^0]: * Bit 3 ~ 5 : Not used.

[^1]: * The S8 register is only readable.
 * Move the high byte of the addressed ROM code to TBH register by TABLE instruction.

